网络是新冷战,人工智能是军备竞赛

温馨提示:全文约1558字,阅读全文大约需要2分钟

互联网加强了交流,增加了商业,使人们社会上走到了一起。网络攻击已经变得如此普遍,以至于现只有大型网络攻击才成为新闻。由于开放的互联网是由成本和速度驱动的,而不是由安全驱动的,持续不断的网络攻击将我们推入了一场新的冷战——人工智能是这场军备竞赛的基础

.

网络攻击现经常发生,范围从恼人到毁灭。攻击和检测之间仍然有一个明显的滞后-我们需要使用人工智能来提高防御能力并缩小差距

互联网加强了交流,增加了商业,使人们社会上走到了一起。不幸的是,它还启用了恶意活动,包括数据泄露、勒索软件、破坏系统和黑暗网络。网络攻击已经变得如此普遍,以至于现只有大型网络攻击才成为新闻。美国可以说是世界上“有线”最多的国家,从汽车到冰箱,再到安全摄像头,各种东西都联网,这让我们也成为最脆弱的国家。由于开放的互联网是由成本和速度驱动的,而不是由安全驱动的,持续不断的网络攻击将我们推入了一场新的冷战——人工智能(AI)是这场军备竞赛的基础

从 月光迷宫 20世纪90年代末到最近的SolarWinds攻击中,我们看到恶意软件和勒索软件植入我们的基础设施和系统。民族国家发动了网络攻击,通常是作为军事行动的前奏。从开放互联网发起的攻击活动持续不断,略低于武装冲突

我们从路由器配置或恶意软件代码的角度来看待网络攻击,但巨大的通信流量使网络安全成为数据科学的一个领域。所有新的传感器和物联网设备都会产生大量的数据,可以通过分析来检测对手的活动。如此庞大的数据量需要分析技术来综合人类理解和决策活动的本质

利用人工智能分析这些海量的网络数据和能力正呈指数级增长。2016年,当人工智能驱动的阿尔法围棋击败世界围棋冠军时,是一个“Sputnik moment“关于人工智能的发展。一年后,中国发布了 新一代人工智能开发计划 到2030年成为人工智能领域的世界领先者 DARPA虚拟格斗,人工智能飞行员打败了人类飞行员。现很明显,人工智能已经迅速发展到对现实世界安全的影响

网络攻击现经常发生,范围从恼人到毁灭。攻击和检测之间仍然有一个明显的滞后-我们需要使用人工智能来提高防御能力并缩小差距

阅读完整的文章>

 

英文译文:

The Internet has enhanced communications, increased commerce, and brought people together socially. Unfortunately, it has also enabled malicious activity with data breaches, ransomware, destroyed systems, and the Dark Web. Cyberattacks have become so common that only the large ones make the news now. The United States is arguably the most “wired” country in the world, with everything from cars to refrigerators to security cameras connected online, making us also the most vulnerable. Because the open Internet is driven by cost and speed and not by security, continual cyberattacks have pushed us into a new kind of Cold War — with artificial intelligence (AI) serving as the basis of this arms race.

From Moonlight Maze in the late 1990s to the recent SolarWinds attack, we have seen malware and ransomware planted in our infrastructure and systems. Nation-states have staged cyberattacks, often as a prelude to military actions. Attacks launched from the open Internet are at a constant level of activity, just below armed conflict.

We think of cyberattacks in terms of router configurations or malware code, but the tremendous amounts of communications traffic make cybersecurity a field of data science. All the new sensors and Internet of Things devices produce tremendous amounts of data that can be analyzed to detect adversary activity. Such massive volumes of data need analytic techniques to synthesize the essence of the activity for human understanding and decision-making.

The use of AI to analyze these massive amounts of cyber data and capabilities is growing exponentially. In 2016, when the AI-driven Alpha Go beat the world Go champion, it was a “Sputnik moment” about the growth of AI. A year later, China released its New Generation Artificial Intelligence Development Plan to be the world leader in AI by 2030. In 2020 at a DARPA virtual dogfight, the AI pilot beat the human pilot. It is now clear that AI has progressed quickly to have real-world security implications.

Cyberattacks are now constant and range from annoying to devastating. There is still a significant lag between attack and detection — and we need to use AI to improve defenses and reduce that gap.

 

Share this Post:

相关资讯: