NASA希望为宇航员设定新的辐射极限

温馨提示:全文约5819字,阅读全文大约需要6分钟

这也是NASA去年发表的一项关于宇航员面临的最优先健康问题的“红色风险”之一。辐射会破坏DNA,并导致导致癌症的突变。到目前为止,一名55岁的NASA宇航员其职业生涯中的有效剂量仅限于400毫希沃特,而一名35岁的女性宇航员仅可以暴露于120毫希沃特。但是,NASA官员并没有为自己的保守立场道歉。NASA提出的新辐射标准对所有宇航员都是相同的。

既然拜登政府已经表示支持美国宇航局的阿提米斯(Artemis)登月任务,那么也许我们应该考虑一下宇航员到达月球时将面临的风险,以及更长途的火星之旅会发生什么。

太空旅行时要担心的所有事情-设备故障,失重的怪异效果,与空间碎片的碰撞以及距离很远-最难处理的是太阳或宇宙射线对健康的影响事件。这种辐射由原子组成,这些原子星际空间中加速运动时失去了电子,接近光速,例如恒星爆炸后立即发生的事情。它以三种形式出现:被困地球磁场中的粒子;太阳耀斑期间粒子射入太空;和银河系宇宙射线,它们是来自太阳系外部的高能质子和重离子。

这也是NASA去年发表的一项关于宇航员面临的最优先健康问题的“红色风险”之一。辐射会破坏DNA,并导致导致癌症的突变。据美国宇航局网站称,它还可能引起心血管健康问题,例如心脏损害,动脉和血管狭窄以及神经系统问题,这些问题可能导致认知障碍。

地球上,人类每年会受到3-4毫西弗(mSv)的辐射,其中大部分来自自然资源,例如某些种类的岩石和极少数穿过大气层的宇宙射线。国际空间站上,宇航员每年可获得约300 mSv。到目前为止,一名55岁的NASA宇航员其职业生涯中的有效剂量仅限于400毫希沃特,而一名35岁的女性宇航员仅可以暴露于120毫希沃特。

现,NASA计划派人执行更长的任务,该机构正考虑将这一阈值提高到任何性别或年龄的宇航员600 mSv。根据现行标准,一些资深宇航员可能会被排除长期太空飞行任务之外,因为他们正挑战终生辐射极限。年轻的宇航员太空中的飞行时间更少,因此接触时间也更少,但是一项大型任务的成功可能需要年轻人的经验。

NASA提出的新限制仍将低于其他太空机构的限制;欧洲,俄罗斯和加拿大的宇航员被太空官员搁浅之前,可能会受到高达1,000 mSv的暴露。但是,NASA官员并没有为自己的保守立场道歉。美国宇航局首席医学官办公室的人类航天标准技术研究员大卫·弗朗西斯科说:“我们认为可以接受的风险中,这是一种不同的风险态势。” “我们之所以选择600个,是因为我们认为它更适合我们的文化。这是我们不断努力并不断前进的动力。我们就增加到1000进行了辩论,这是一个问题:我们仍然对600保持保守吗?”

为了解决这个问题,航天局要求美国国家科学院的专家小组确定最适合使用的数字。该小组于上个月开始开会,预计将于今年夏天完成工作。专家将研究NASA如何计算其新的暴露极限,以及这些极限如何与现有的临床数据和动物研究相匹配。

为了了解辐射与癌症之间的联系,医学研究人员一直关注二战期间日本原子弹爆炸幸存者及其子女的健康状况。也有研究对暴露于X射线的医务工作者和核电站工作人员其职业生涯中接受低剂量辐射的研究。但是NASA并没有太多关于太空辐射对宇航员的健康影响的数据。

部分原因是,尽管国际空间站已经接待了宇航员20年,并且进行了许多有关失重的研究,但它并不是研究辐射对人体影响的好地方,因为它位于地球轨道的磁场。美国国家癌症研究所高级研究员,癌症流行病学家,探索NASA辐射风险的小组成员艾米·贝灵顿·德·冈萨雷斯(Amy Berrington deGonzález)说,一旦航天飞机及其乘员离开该保护层,辐射风险就会跃升。她说:“我们知道癌症的风险可能会更高,但目前还不清楚到底有多高以及是否会以某种方式影响不同的组织。” “质子对大脑的剂量可能与质子对胃的剂量不同。致癌作用还有很多不确定性。”

简单的物理学就可以说明当航天器与一块旧卫星或快速移动的天体小石碰撞时会发生什么,但是预测人体如何处理看不见的太阳粒子或宇宙射线的爆发则要困难得多。诸如癌症之类的健康问题可能由多种因素触发,辐射只是其中之一。单个宇航员罹患癌症的风险还取决于他们的年龄,性别,家族史,饮食等生活方式因素,是否吸烟,以及每次外太空旅行中可能受到的有害辐射量。

而且很难预测给定任务的辐射暴露会如何影响单个宇航员。美国宇航局(NASA)使用传感器对最近进行的“红色星球”漫游车任务进行了测量,测量了这里与火星之间的空间辐射量。 Berrington deGonzález说,真正的挑战是弄清楚辐射将对人类产生什么影响。她说:“预测CT扫描的风险甚至是困难的。” “当您将其用于太空辐射时,会有各种不同类型的太空辐射暴露。不是X射线和伽马射线,还有质子和其他粒子,我们几乎没有数据。”

JD Polk说,NASA十多年来一直没有为宇航员更新其癌症风险演算,该机构希望利用动物模型以及对医学和核工厂工人及炸弹幸存者进行长期研究的最新数据,美国宇航局首席医疗官。一旦NASA最终确定了新的最大辐射标准,工程师将使用它来指导他们的蓝图,从而设计出长期任务中保护宇航员的方法。例如,弗朗西斯科(Francisco)指出,为期三年的往返火星旅行可能会使宇航员暴露于总计1000 mSv的空间,因此这意味着NASA需要弄清楚如何通过屏蔽来减少这种暴露。一些想法包括:一种名为AstroRad的背心,正太空站上进行测试,该背心可能会保护宇航员免受太阳粒子的侵害,或者是航天器内部的小掩体,以保护整个机组免受高能银河射线的冲击。

宇航员不仅要担心癌症。辐射可引起心肌重塑,其中心脏的结构开始发生变化,坚硬的纤维组织生长以替代健康的肌肉,从而可能导致心力衰竭。赖斯大学生物工程学教授简·格兰德·艾伦说,其他影响包括血管粥样硬化,可导致中风或心脏病发作,或引起炎症,细胞死亡和DNA损伤。美国国家航空航天局(NASA)资助格兰德·艾伦(Grande-Allen)的实验室开发早期阶段的体外细胞模型,以研究太空辐射对心血管疾病的影响。

Grande-Allen说:“即使有很多屏蔽,如果长时间内只有少量辐射,也将导致心血管疾病。” “有很多我们不知道的原因,因为我们之前从未做过。”

地球上的人与太空中的人之间的最大区别是,宇航员是根据其身体素质和健康史而被选拔的;另外,他们还不断地锻炼(尽管跑步机上)。所有这些降低了他们患心血管疾病和癌症的风险。但是,尽管宇航员保持健康是一件好事,但到目前为止,有关太空物体票价的大多数研究都是针对非常没有代表性的一群人进行的。自1962年约翰·格伦成为第一位太空人以来,美国宇航局的宇航员部队绝大多数是白人和白人。

该机构不得不根据其他类型的辐射研究推断女性宇航员的癌症风险。对日本原子弹幸存者的研究表明,女性罹患放射线诱发的肺癌,乳腺癌和卵巢癌的风险更高,这就是为什么NA​​SA对女性宇航员制定更严格标准的原因。多年来,这导致一些前女航天员抱怨说,她们受到歧视,无法通过太空中花费更多的时间来发展自己的事业。 NASA提出的新辐射标准对所有宇航员都是相同的。


英文译文:

Now that the Biden administration has signaled its support for NASA’s Artemis mission to the moon, maybe we should think about the risks astronauts will face when they get there, and what might happen during a longer trip to Mars.

Of all the things to worry about while traveling in space—equipment malfunctions, the weird effects of weightlessness, collisions with space debris, and just being far away—one the most difficult to deal with is the health effects of radiation from the sun or cosmic events. This radiation consists of atoms that have lost their electrons as they accelerate in interstellar space, approaching the speed of light—something that happens right after a star explodes, for example. It comes in three forms: particles trapped in the Earth’s magnetic field; particles shot into space during solar flares; and galactic cosmic rays, which are high-energy protons and heavy ions from outside our solar system.

It’s also one of the “red risks” identified by a NASA study published last year on the highest-priority health problems faced by astronauts. Radiation damages DNA and can lead to mutations that can trigger cancers. It can also cause cardiovascular health problems such as heart damage, the narrowing of arteries and blood vessels, and neurological problems that can lead to cognitive impairment, according to a NASA website.

On Earth, humans are exposed to 3 to 4 millisieverts (mSv) of radiation a year, mostly from natural sources like some kinds of rocks and the few cosmic rays that get through the atmosphere. On the International Space Station, astronauts get about 300 mSv per year. Until now, a 55-year-old male NASA astronaut was limited to an effective dose of 400 mSv over his career, while a 35-year-old female astronaut could only be exposed to 120 mSv.

Now that NASA is planning to send people on much longer missions, the agency is considering raising that threshold to 600 mSv for astronauts of any gender or age. Under the existing standard, some veteran astronauts might have been excluded from longer-term space missions because they are bumping up against lifetime radiation limits. Younger astronauts have less flying time in space and hence less exposure, but the success of a big mission might require experience over youth.

NASA’s proposed new limit would still be lower than those for other space agencies; European, Russian and Canadian astronauts can be exposed to up to 1,000 mSv before they get grounded by their space officials. But NASA officials don’t apologize for their more conservative stance. “It’s a different risk posture in what we feel is acceptable risk,” says David Francisco, technical fellow for human spaceflight standards at NASA’s Office of the Chief Medical Officer. “We picked 600 because we feel it's more acceptable to our culture. It’s something we constantly work on and go back and forth on. We debated on going to 1,000, and that's one of the questions: Are we still being conservative with 600?”

To resolve that question, the space agency has asked an expert panel from the National Academy of Sciences to determine what’s the best number to use. The panel began meeting last month and is expected to complete its work by this summer. The experts will look at how NASA has calculated its new exposure limits, and how those match up with existing clinical data and animal studies.

To understand the links between radiation and cancers, medical researchers have long been following survivors of the atomic bomb blasts in Japan during World War II (as well as the health of their children). There have also been studies of medical workers who are exposed to x-rays, and nuclear plant workers, who receive low doses of radiation over the courses of their careers. But NASA doesn’t have much data on the health effects of radiation from space on its astronauts.

Partly, that’s because although the International Space Station has been hosting astronauts for 20 years, and has been home to many studies on weightlessness, it’s not really a good place to study the effects of radiation on the human body—the station sits in the protective magnetic field of low-Earth orbit. Once a spacecraft and its human occupants travel beyond that protective bubble, the radiation risk jumps, says Amy Berrington de González, a senior investigator and cancer epidemiologist at the National Cancer Institute, and a member of the panel exploring radiation risk for NASA. “What we know is the cancer risk is likely to be higher, but exactly how much higher and whether different tissue will be affected in certain ways isn’t clear,” she says. “A dose of protons to the brain might be different than a dose of protons to the stomach. There’s a lot more uncertainty of the carcinogenic effects.”

Simple physics can tell what happens when a spacecraft collides with a piece of an old satellite or fast-moving astro-pebble, but it’s a lot more challenging to predict how the body will handle a burst of invisible solar particles or cosmic rays. Health issues like cancer can be triggered by many things, and radiation is only one one of them. An individual astronaut’s risk of developing cancer is also dependent on their age, gender, family history, lifestyle factors like their diet and if they’ve ever smoked, as well as the amount of damaging radiation they might get on any trip to outer space.

And it’s hard to predict how the radiation exposure on a given mission might affect an individual astronaut. Using sensors on recent rover missions to the Red Planet, NASA has measured how much space radiation lies between here and Mars. The real challenge is figuring out what that radiation will do to a human, says Berrington de González. “It’s even difficult to project risk for a CT scan,” she says. “When you take it to space radiation, there are all different types of space radiation exposure. It's not x-rays and gamma rays, it's also protons and other particles that we have very little data for.”

NASA hasn’t updated its cancer risk calculus for astronauts in more than a decade, and the agency wants to take advantage of more recent data from animal models and those long-term studies of medical and nuclear plant workers and bomb survivors, says J. D. Polk, NASA’s chief medical officer. Once NASA finalizes a new maximum radiation standard, engineers will use it to guide their blueprints in designing ways to protect astronauts during long-duration missions. For example, Francisco points out, a three-year round trip to Mars and back might expose an astronaut to a total of 1,000 mSv, so that means NASA needs to figure out how to reduce that exposure with shielding. Some ideas include a vest called AstroRad that is being tested on the space station that might protect astronauts from solar particles, or a small shelter inside the spacecraft to protect the entire crew against a blast of high-energy galactic rays.

And it’s not just cancer that astronauts have to worry about. Radiation can cause myocardial remodeling, in which the structure of the heart begins to change, and tough, fibrous tissue grows to replace healthy muscle, potentially leading to heart failure. Other effects include atherosclerosis in blood vessels, which can cause stroke or heart attack, or inflammation, cell death and DNA damage, according to Jane Grande-Allen, professor of bioengineering at Rice University. Grande-Allen’s lab has been funded by NASA to develop an early stage in vitro cell model to study the effects of space radiation on cardiovascular disease.

“Even if there is a whole lot of shielding, if there is a small amount of radiation over a long period of time, it’s going to be leading to cardiovascular disease,” Grande-Allen says. “There’s a lot we don’t know because we haven’t done this before.”

One big difference between people on Earth and people in space is that astronauts are selected for their physical prowess and histories of good health; plus, they are constantly exercising (albeit on treadmills). All of these lower their risk of both cardiovascular disease and cancer. But while it’s good that astronauts are healthy, so far most of the research on how bodies fare in space have been done on a very nonrepresentative group of people. NASA’s astronaut corps has overwhelmingly male and white since John Glenn became the first American in space back in 1962.

The agency had to extrapolate the cancer risk for female astronauts based on other kinds of radiation research. Studies of Japanese atomic bomb survivors have shown that women have a higher risk of radiation-induced lung, breast and ovarian cancers, which is why NASA has had a stricter standard for female astronauts. Over the years, that has led to complaints from some former female astronauts that they were being discriminated against and unable to advance their careers by spending more time in space. NASA’s new proposed radiation standard would be the same for all astronauts.


Share this Post:

相关资讯: